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Abstract

In this work we describe, implement and analyse in detail a high-order fully discrete spectral algorithm for solving the

Helmholtz equation exterior to a bounded (sound-soft, sound-hard or absorbing) obstacle in three space dimensions,

with Dirichlet, Neumann or Robin (impedance) boundary conditions. Our algorithm may be thought of as a discrete

Galerkin method, but it is also equivalent to a Nystr€om method after a simple transformation. We test our algorithm

with extensive computational experiments on a variety of three-dimensional smooth and non-smooth obstacles with

conical singularities. Our tests include the computation of scattered and far fields induced by incident plane waves. Our

method is shown to be very accurate for scattering from surfaces which are globally parameterised by spherical coor-

dinates, and tests show that it performs very much better than several of the well-established fast algorithms for obstacle

scattering on a range of such surfaces, even some which are non-smooth. Further, we prove superalgebraic convergence

of the scattered and far fields obtained using our algorithm in the case of smooth scatterers.
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1. Introduction

In this paper, we present a high-order algorithm for solving the Helmholtz equation defined in an un-

bounded region, composed of the exterior of a bounded connected obstacle in R3, with Dirichlet, Neumann

or Robin (impedance) boundary conditions. It is well known that efficient computational schemes for such
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problems play a significant role in scattering theory [7–9,18]. Our algorithm is based on the boundary

integral method and has the usual advantage over domain discretisation schemes that only the finite

boundary has to be discretised and the radiation condition is satisfied automatically. Domain truncation or
infinite elements (e.g. [12]) can thus be avoided.

The spectral algorithm discussed in the present paper is restricted to the class of obstacles with sur-

faces that can be described globally in spherical coordinates. When the surface is smooth, our algorithm

attains exponential convergence by exploiting the smoothness and the spherical coordinate system in a

special way. As we shall see, relatively few degrees of freedom are required to obtain good accuracy on

the boundary or in the exterior domain, or to compute the practically important far field pattern. In

particular, our numerical experiments on spherical scatterers (see Section 4) show that, for frequencies in

the resonance region (i.e. for obstacles with size close to one wavelength) very accurate far field ap-
proximate solutions (for a fixed incident and observed direction) can be computed in less than 1 min of

CPU time (on a moderate computing platform) and for high frequency scattering (with wavelengths

down to 0:04 times the size of obstacles), accurate solutions (i.e. RMS error about 0.001%) can be

computed in about 10 h of CPU time. Resonance region calculations are of particular use for inverse

scattering ([8, p. 105]).

We compare our algorithm with some of the most powerful recent algorithms for scattering [3,4,6,20]. In

[3,4] the Bruno–Kunyansky sound-soft acoustic scattering algorithm has been computationally demon-

strated to be very competitive with the fast multipole algorithm FISC [20] and the high-order Nystr€om
algorithm FastScat [6], used in electromagnetic scattering. We compare our algorithm with that of Bruno–

Kunyansky (for all the smooth and non-smooth obstacles considered in [3–5]) and demonstrate very

competitive accuracy and efficiency of our algorithm in Section 4. A common feature of our method and

that of Bruno–Kunyansky is the use of spherical coordinates; globally in our case and locally in [3,4]. Due

to our assumption that the surface is globally parametrisable, we are able to treat the singularities in the

weakly singular integrals analytically using a singularity division technique.

In Appendix A to this paper we prove the superalgebraic convergence of our algorithm in the case of

smooth surfaces. In Section 4 we demonstrate also that our algorithm can also be used effectively for non-
smooth obstacles (provided they have an appropriate global parametrisation). The non-smooth objects

used in our experiments feature conical singularities and can be found in the list of benchmark radar targets

suggested in [23]. The theoretical restriction to smooth objects may not be so much of a disadvantage in the

context of inverse scattering [8], where general qualitative information about obstacles is of greater im-

portance than finer details of obstacles such as corners and edges. Moreover, when the boundary-integral

and finite-element methods are coupled across an artificial surface, this surface can be chosen to be smooth,

and then the discretisation proposed here would be very appropriate. (See [14] for such an approach in two

dimensions.)
We would like to remark that the restriction to surfaces which can be globally parametrised by spherical

coordinates is here rather essential. The extension of our method to more general geometries would require

covering the surface with several coordinate charts. The extension of our method to this setting raises a

number of technical problems, both in the formulation of an extended algorithm and in its error analysis.

A basic theory for the discretisation proposed here was given in [13], which in turn built on the results in

[11,22]. However, most practical details required for obstacle scattering, such as an algorithm for com-

puting the far field and the exterior scattered field were omitted in [13]. These details are part of the present

paper. In addition, an important component of our algorithm is the efficient computation of rotated
spherical harmonics. In [22] (see also [8, p. 84]), such computations were based on the idea of computing

Fourier coefficients of rotated harmonics using a high-order quadrature rule. In [13] a simple explicit

formula which avoided such quadratures was presented. However, the formula in [13] turns out not to be

useful in practice for high degree spherical harmonics (e.g. degree 25 or above), since it contains many terms

of almost equal size but with differing sign and thus suffers from cancellation error. We overcome this
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difficulty by deriving (in Section 3.3) an alternative formula which avoids this cancellation problem. This

formula is crucial for the success of our method in the high-frequency examples.

In the present paper we provide a full specification of our obstacle scattering algorithm, extensive nu-
merical experiments and additional theoretical results which are needed to describe the computation of

approximate solutions exterior to the scatterer and the far field. We also discuss the implementation of

general boundary conditions: the boundary integral method in [13] is restricted to the Dirichlet case.

For part of the long history of spectral boundary integral methods using spherical functions, we refer to

[1,8,10,11,13,15,16,22] and for background on integral equations in scattering theory we refer to [7,8,18].

For a three-dimensional exterior Helmholtz problem, a fully discrete spectral method using a singularity

division technique was introduced (but not analysed) in [22]. In [22], computational results mainly for

frequencies in the resonance region are given but without CPU time details. Our algorithm leads to only
half the size of the linear system in [22]. A three-dimensional spectral method with a singularity subtraction

technique was investigated in [15] and recently, the algorithm of [15] was used in [16] for a different

boundary integral formulation of the exterior problem. In [15,16] only a semi-discrete version of the ac-

tually implemented method was analysed. Further, only low frequency computational results are given in

[15,16]. Since our algorithm requires only about a minute of CPU time to reach high accuracy for low

frequencies, much faster than the CPU times reported in [15,16], we avoid detailed comparison with

methods in [15,16,22] and instead focus mainly on a comparison with [3,4].

In this work we are interested in computing an approximation to the radiating solution u of the exterior
Helmholtz equation

DuðxÞ þ k2uðxÞ ¼ 0; x 2 R3 n �D; ð1:1Þ

where D � R3 is assumed to be a bounded connected domain with boundary oD and a connected com-

plement R3 n �D. (We will give precise requirements on the surface oD in the next section.) Here, k > 0 is

called the wavenumber and we use the standard notion of radiating solution [7,8,18], i.e. u satisfies the

Sommerfeld radiation condition

lim
r!1

rðou=or � ikuÞ ¼ 0; ð1:2Þ

where r ¼ jxj and the limit is assumed to hold uniformly in all directions x=jxj. Assuming that (1.1) has a
unique radiating solution, under appropriate regularity assumptions, by Green�s theorem, u can be rep-

resented as [8, Theorem 2.4]

uðxÞ ¼
Z
oD

oUðx; yÞ
onðyÞ uðyÞ dsðyÞ �

Z
oD

Uðx; yÞ ou
on

ðyÞ dsðyÞ; x 2 R3 n �D; ð1:3Þ

where

Uðx; yÞ :¼ 1

4p
expðikjx� yjÞ

jx� yj ð1:4Þ

is the fundamental solution of the Helmholtz equation and nðyÞ denotes the unit outward normal to oD at

the point y 2 oD. Further, the radiating solution u has the asymptotic behaviour of an outgoing spherical

wave [8, Theorem 2.5]

uðxÞ ¼ eikjxj

jxj u1ðx̂Þ
�

þO
1

jxj

� ��
; ð1:5Þ

as jxj ! 1 uniformly in all directions x̂ ¼ x=jxj. In (1.5), the function u1 is known as the far field pattern of

u, and it is defined on the unit sphere (denoted throughout the paper by oB). Computation of the far field
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pattern plays an important role in inverse scattering theory, to identify the shape of the scatterers, such as

buried objects [8,9].

If we know the radiating solution u and its normal derivative only on the surface oD, then a computable
representation of the far field pattern u1 can be obtained, based on the asymptotics of the fundamental

solution

Uðx; yÞ ¼ eikjxj

4pjxj e�ikx̂�y
�

þO
1

jxj

� ��
;

oUðx; yÞ
onðyÞ ¼ eikjxj

4pjxj
oe�ikx̂�y

onðyÞ

(
þO

1

jxj

� �)
: ð1:6Þ

Using the direct representation formula (1.3) (or other types of indirect representations [7,8,18]), and

depending on the boundary condition, the radiating solution u and its far field pattern u1 can thus be

computed, essentially by solving a surface integral equation.
In the next section, following [7,8,18], we describe boundary integral equations for solving (1.1) and

(1.2) with Dirichlet, Neumann and Robin boundary conditions. We introduce tools needed for approx-

imating these in Section 2.4. Our algorithm and implementation details are described Section 3. We give

numerical results in Section 4. Finally, the relevant stability and convergence results are presented in

Appendix A.
2. Model problems and approximations

The classical boundary-value problems for the exterior Helmholtz equation are:

Exterior Dirichlet sound-soft obstacle problem. Find the radiating solution u of the Helmholtz equation

(1.1) satisfying the Dirichlet boundary condition

u ¼ f on oD: ð2:1Þ

Exterior Robin absorbing (Neumann sound-hard) obstacle problem. Find the radiating solution u of the

Helmholtz equation (1.1) satisfying the impedance (Neumann) boundary condition

ou
on

þ ilu ¼ g; on oD; l > 0 ðl ¼ 0Þ: ð2:2Þ

In case of scattering of a given incoming wave uI by a sound-soft obstacle D, the Dirichlet data f in (2.1) are

given by f ¼ �uI and the solution of (1.1) and (2.1) gives the scattered field u ¼ uS. For the absorbing

(sound-hard) obstacle scattering case, the Robin (Neumann) data g in (2.2) are given by

g ¼ �ðouI=onÞ � iluI.
These problems have unique solutions for k > 0 and each of them can be reformulated as a boundary

integral equation in several ways (see, e.g. [7,8,18]). In this paper we restrict to second-kind direct or in-

direct formulations, all of which are of the general form described in Section 2.1 – see (2.3). Although our

high-order solution method can be applied to any equation of the general form (2.3), in this paper we

compute only scattering examples. Examples of reformulations of the above boundary value problems into

the form (2.3) are reviewed in Section 2.2.

2.1. General surface integral equation

In the next subsection, following [7,8,18], we review three distinct classes of boundary integral equations

that are equivalent to the exterior problems (see (2.11), (2.13), (2.16) and (2.19)–(2.25). These three

boundary integral equations can be written as a uniquely solvable general boundary integral operator

equation
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wþMw ¼ ½aI þN�h on oD; ð2:3Þ

for the unknown w and for a given function h on oD. Here M;N are linear, weakly singular integral op-
erators on oD, of the form

MwðxÞ ¼
Z
oD

mðx; yÞwðyÞ dsðyÞ; NwðxÞ ¼
Z
oD

nðx; yÞwðyÞ dsðyÞ; x 2 oD: ð2:4Þ

The kernel functions mðx; yÞ; nðx; yÞ are of the form

mðx; yÞ ¼ 1

jx� yjm1ðx; yÞ þ m2ðx; yÞ; nðx; yÞ ¼ 1

jx� yj n1ðx; yÞ þ n2ðx; yÞ ð2:5Þ

with mi, for i ¼ 1; 2, of the form

miðx; yÞ ¼ mi;1ðx; yÞ þ mi;2ðx; yÞ
ðx� yÞTnðyÞ

jx� yj2
þ mi;3ðx; yÞ

ðx� yÞTnðxÞ
jx� yj2

ð2:6Þ

with each mi;j infinitely continuously differentiable on R3 � R3; i ¼ 1; 2, j ¼ 1; 2; 3. We define ni, for i ¼ 1; 2
similarly, with m in (2.6) replaced by n. In the RHS of (2.3) a 2 R and I is the identity operator.

The general operator equation (2.3) with N ¼ 0 was considered in [13]. However, as described in (2.16),

for the Neumann sound-hard and Robin absorbing obstacle problems, we need to allow an integral op-

erator N, similar to that of the weakly singular operator M.

In this paper, we introduce a practical variant of the fully discrete computational scheme of [13] for (2.3).

In addition, we describe and analyse new methods to compute approximate solutions on the exterior region

R3 n �D and the far field pattern.

Using the unique solution of w of (2.3) on the surface oD, solutions to the Helmholtz problems on the

exterior region R3 n �D can be written in a unified way as

wðxÞ ¼
Z
oD

~mðx; yÞwðyÞ dsðyÞ þ
Z
oD

~nðx; yÞ~hðyÞ dsðyÞ; x 2 R3 n �D; ð2:7Þ

where the smooth kernel function ~m is defined on ðR3 n �DÞ � oD, with representation analogous to m. For
the Dirichlet problem ~n ¼ 0 ¼ ~h and for the Neumann and Robin problems ~n ¼ U and ~h ¼ h. (See concrete
representations (2.10), (2.14) and (2.17).) Throughout the paper ~h ¼ h or 0.

Further, the far field pattern w1 associated with the solution w of (2.3) gives a unified representation of the

far field pattern of the Helmholtz problems (see (2.12), (2.15) and (2.18)). The general form of w1 is given by

w1ðx̂Þ ¼
Z
oD

mf ðx̂; yÞwðyÞ dsðyÞ þ
Z
oD

nf ðx̂; yÞ~hðyÞ dsðyÞ; x̂ 2 oB; ð2:8Þ

where mf ; nf are defined on oB� oD, and are linear combinations of e�ikx̂�y and oe�ikx̂�y=onðyÞ.
2.2. Concrete surface integral representations

We now review various reformulations of the above exterior Helmholtz problems and show that they are
all of the general form (2.3). For this we need the single- and double-layer operators

SwðxÞ :¼ 2

Z
oD

Uðx; yÞwðyÞ dsðyÞ; KwðxÞ :¼ 2

Z
oD

oUðx; yÞ
onðyÞ wðyÞ dsðyÞ ð2:9Þ

for x 2 oD, w 2 CðoDÞ, the space of all continuous functions on oD.
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2.2.1. The exterior Dirichlet problem

Following [8, p. 48], we can represent the solution u by

uðxÞ ¼
Z
oD

oUðx; yÞ
onðyÞ

�
� icUðx; yÞ

�
vðyÞ dsðyÞ; x 2 R3 n �D; ð2:10Þ

where v 2 CðoDÞ is found by solving

vþ Kv� icSv ¼ 2f : ð2:11Þ

Then, by using (1.6) in (2.10), the far field pattern is

u1ðx̂Þ ¼
1

4p

Z
oD

oe�ikx̂�y

onðyÞ

(
� ice�ikx̂�y

)
vðyÞ dsðyÞ; x̂ 2 oB: ð2:12Þ

In (2.10)–(2.12), c > 0 is an arbitrary positive constant. It is well known that direct boundary integral

formulations based on the Green�s formula (1.3) for general exterior problems yield non-uniquely

solvable surface integral equations for certain non-physical values of k [7,8,18]. Hence, we used the

indirect formulation above using the combined layer potentials for the general exterior Dirichlet

problem.
However, in the particular case of a direct scattering problem, with the Dirichlet boundary data f in (2.1)

given by a plane wave: f ðxÞ ¼ �uIðxÞ :¼ �eikx�d̂ at a fixed unit direction vector d̂, we may use the Green�s
formula (1.3) to obtain the exterior solution, known as the scattered field, denoted by uS. More precisely,

using the fact that the plane wave satisfies the Helmholtz equation on the whole of R3, and the total field

uTð:¼ uI þ uSÞ and uS satisfy the exterior Helmholtz problem, v :¼ ouT=on satisfies the boundary integral

equation [8, p. 59]

vþ K0v� iSv ¼ 2
ouI

on
� 2iuI on oD; ð2:13Þ

where K0 denotes the normal derivative of S. Using the solution v of (2.13), the scattered field uS on the

exterior region R3 n �D is

uSðxÞ ¼ �
Z
oD

Uðx; yÞvðyÞ dsðyÞ; x 2 R3 n �D ð2:14Þ

and the far field pattern of u is

u1ðx̂Þ ¼ � 1

4p

Z
oD

e�ikx̂�yvðyÞ dsðyÞ; x̂ 2 oB: ð2:15Þ
2.2.2. The exterior Robin (Neumann) problem

Letting x ! oD in (1.3), and using the jump relations of the layer potentials, we get

�uþ Ku�S
ou
on

¼ 0 on oD:

Substituting (2.2), we obtain the boundary integral equation

u� Ku� ilSu ¼ �Sg on oD; l > 0 ðl ¼ 0Þ: ð2:16Þ
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Throughout this paper for the exterior Robin (Neumann) Helmholtz problem, we assume that k is not an

interior Dirichlet eigenvalue. This ensures that (2.16) is uniquely solvable ([7, p. 98]) and the solution of the

exterior Robin (Neumann) problem is

uðxÞ ¼
Z
oD

oUðx; yÞ
onðyÞ uðyÞ

�
þ ilUðx; yÞuðyÞ � Uðx; yÞgðyÞ

�
dsðyÞ; x 2 R3 n �D ð2:17Þ

and the corresponding far field pattern is

u1ðx̂Þ ¼
1

4p

Z
oD

oe�ikx̂�y

onðyÞ uðyÞ
"

þ ile�ikx̂�yuðyÞ � e�ikx̂�ygðyÞ
#
dsðyÞ; x̂ 2 oB: ð2:18Þ

In order to put (2.11), (2.13) and (2.16) into the general form discussed in Section 2.1, it is necessary

([8,22]) to split write the single- and the double-layer acoustic operators as follows:

SwðxÞ ¼ 1

2p
ScwðxÞ½ þ iSswðxÞ�; KwðxÞ ¼ 1

2p
½KcwðxÞ þ iKswðxÞ�; ð2:19Þ

where

ScwðxÞ :¼
Z
oD

1

jx� yj S
cðx; yÞwðyÞ dsðyÞ; SswðxÞ :¼

Z
oD

Ssðx; yÞwðyÞ dsðyÞ; ð2:20Þ
KcwðxÞ :¼
Z
oD

1

jx� yjK
cðx; yÞwðyÞ dsðyÞ; KswðxÞ :¼

Z
oD

Ksðx; yÞwðyÞ dsðyÞ: ð2:21Þ

Here the kernels Ss, Sc, Ks, Kc are

Scðx; yÞ :¼ cosðkjx� yjÞ; Ssðx; yÞ :¼ sinðkjx� yjÞjx� yj�1
if x 6¼ y;

k if x ¼ y

�
ð2:22Þ

and

Kcðx; yÞ :¼ ðx� yÞTnðyÞ
jx� yj2

Scðx; yÞ þ kðx� yÞTnðyÞSsðx; yÞ;

Ksðx; yÞ :¼ ðx� yÞTnðyÞ
jx� yj2

½Ssðx; yÞ � kScðx; yÞ�:

ð2:23Þ

Note that the kernels Sc, Ss, Kc, Ks are infinitely continuously differentiable on R3 � R3.

Moreover, the normal derivative of the single-layer operator should be represented as

K0wðxÞ ¼ 1

2p
½ðKcÞ0wðxÞ � iðKsÞ0wðxÞ�; ð2:24Þ

where

ðKcÞ0wðxÞ :¼
Z
oD

1

jx� yjK
cðy; xÞwðyÞ dsðyÞ; ðKsÞ0wðxÞ :¼

Z
oD

Ksðy; xÞwðyÞ dsðyÞ: ð2:25Þ

Using (2.19)–(2.25), it is easy to see that Eqs. (2.11), (2.13) and (2.16) are special cases of the general

boundary integral equation (2.3). Further the exterior solution representations (2.10), (2.14) and (2.17) can
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be written in the general form (2.7) and the three far field representations (2.12), (2.15) and (2.18) are special

cases of (2.8).

From now on until the end of Section 3, we shall describe our algorithm for discretisation of (2.3),
computation of (2.7) and (2.8). In Section 4 we shall illustrate this general procedure on a range of par-

ticular obstacle scattering Helmholtz boundary-value problems taken from those reviewed above.

2.3. Boundary integral equation on the sphere

The main ingredient of our algorithm is the assumption that the domain D with boundary oD can be

described globally in spherical coordinates: Throughout the paper, we assume that there exists a bijective

parametrisation map q : oB ! oD so that the following identity holds, for any integrable function w on oD:Z
oD

wðxÞ dsðxÞ ¼
Z
oB
wðqðx̂ÞÞJðx̂Þ dsðx̂Þ; ð2:26Þ

where J is the Jacobian of q. (For non-trivial examples of such smooth and non-smooth obstacles, see the

discussion and Fig. 1 in Section 4.) We also assume that we know q and J analytically (or suitably accurate

approximations to them).

Throughout this paper, we use the notation x; y; z for points on the given surface oD and the corre-

sponding transformed coordinates on oB are denoted by x̂; ŷ; ẑ, and it is convenient to use spherical polar
coordinates

x̂ ¼ pðh;/Þ :¼ ðsin h cos/; sin h sin/; cos hÞT: ð2:27Þ

Using the bijective parametrisation map, the surface integral equation (2.3) can be written as a equation
on the unit sphere. More precisely, we have

wðqðx̂ÞÞ þMwðqðx̂ÞÞ ¼ ½aI þN�hðqðx̂ÞÞ; x̂ 2 oB: ð2:28Þ

Now, defining

W ðx̂Þ ¼ wðqðx̂ÞÞ; Hðx̂Þ ¼ hðqðx̂ÞÞ; x̂ 2 oB; ð2:29Þ

we can rewrite (2.28) as

W ðx̂Þ þMW ðx̂Þ ¼ ½aI þN�Hðx̂Þ; x̂ 2 oB: ð2:30Þ

Here (and in rest of the paper), the combined layer operators M;N are integral operators on the unit

sphere, with following details: For a given W 2 L2ðoBÞ, and x̂ 2 oB, using (2.4) and (2.5),

MWðx̂Þ :¼ ½M1 þM2�Wðx̂Þ; NWðx̂Þ :¼ ½N1 þN2�Wðx̂Þ ð2:31Þ
with

M1Wðx̂Þ :¼
Z
oB

1

jx̂� ŷjM1ðx̂; ŷÞWðŷÞ dsðŷÞ; M2wðxÞ :¼
Z
oB
M2ðx̂; ŷÞWðŷÞ dsðŷÞ; ð2:32Þ
N1Wðx̂Þ :¼
Z
oB

1

jx̂� ŷjN1ðx̂; ŷÞWðŷÞ dsðŷÞ; N2Wðx̂Þ :¼
Z
oB
N2ðx̂; ŷÞWðŷÞ dsðŷÞ; ð2:33Þ

where using the representative kernel

Rðx̂; ŷÞ :¼ jx̂� ŷj
jqðx̂Þ � qðŷÞj ; ð2:34Þ
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the kernels M1;M2;N1;N2 on oB� oB are given by

M1ðx̂; ŷÞ :¼ Rðx̂; ŷÞm1ðqðx̂Þ; qðŷÞÞJðŷÞ; M2ðx̂; ŷÞ :¼ m2ðqðx̂Þ; qðŷÞÞJðŷÞ; ð2:35Þ
N1ðx̂; ŷÞ :¼ Rðx̂; ŷÞn1ðqðx̂Þ; qðŷÞÞJðŷÞ; N2ðx̂; ŷÞ :¼ n2ðqðx̂Þ; qðŷÞÞJðŷÞ: ð2:36Þ
2.4. Discrete spectral projection

We shall approximate Eq. (2.30) in the ðnþ 1Þ2-dimensional space of all spherical polynomials of degree

6 n, which we denote Pn. A convenient orthonormal basis for Pn is the spherical harmonics

Yl;jðx̂Þ ¼ ð�1ÞðjþjjjÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p
ðl� jjjÞ!
ðlþ jjjÞ!

s
P jjj
l ðcos hÞ expðij/Þ; 06 l6 n; jjj6 l; ð2:37Þ

where we used the coordinates (2.27) and P jjj
l are the associated Legendre functions.

Central to our algorithm is the fact that the spherical harmonics are eigenfunctions of the single-layer

potential operator on the sphere [8]Z
oB

1

jx̂� ŷj Yl;jðŷÞ dsðŷÞ ¼
4p

2lþ 1
Yl;jðx̂Þ; x̂ 2 oB: ð2:38Þ

The standard Galerkin method for (2.30) seeks an approximate solution Wn 2 Pn, satisfying

ðWn;UnÞ þ ðMWn;UnÞ ¼ ð½aI þN�H ;UnÞ for all Un 2 Pn ð2:39Þ

with ð�; �Þ denoting the usual inner product on oB. In practice, we have to approximate this using cubature

rules on oB of the formZ
oB
Wðx̂Þ dsðx̂Þ ffi

Xm
j¼1

fjWðx̂jÞ ¼: QmW; W 2 CðoBÞ: ð2:40Þ

From (2.40) we build a discrete version of the inner product on oB

ðW1;W2Þm :¼ QmðW1W2Þ ¼
Xm
j¼1

fjW1ðx̂jÞW2ðx̂jÞ; W1;W2 2 CðoBÞ: ð2:41Þ

In this paper we shall restrict to the specific 2ðnþ 1Þ � ðnþ 1Þ-point rectangle-Gauss rule, given byZ
oB
Wðx̂Þ dsðx̂Þ ffi

X2nþ1

r¼0

Xnþ1

s¼1

lrmsWðpðhs;/rÞÞ ð2:42Þ

with pðh;/Þ defined as in (2.27), hs ¼ cos�1 zs, where zs, s ¼ 1; . . . ; nþ 1, are the zeros of the Legendre

polynomial of degree nþ 1, and ms, s ¼ 1; . . . ; nþ 1, are the corresponding Gauss–Legendre weights and

lr ¼
p

nþ 1
; /r ¼

rp
nþ 1

; r ¼ 0; . . . ; 2nþ 1: ð2:43Þ

The number of quadrature points m ¼ 2ðnþ 1Þ2 in the above rule is twice the dimension of the approxi-

mation space Pn. Other ‘‘tensor-product’’ rules are also possible, see the discussion in [13] and references

therein. The rule (2.40) is exact for spherical polynomials of degree 2n.
Corresponding to the discrete inner product (2.41), we have also a discrete orthogonal projection op-

erator Ln : CðoBÞ ! Pn, defined by
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LnW ¼
Xn

l¼0

X
jjj6 l

ðW; Yl;jÞmYl;j; W 2 CðoBÞ: ð2:44Þ

The hyperinterpolation operator Ln satisfies LnUn ¼ Un for any Un 2 Pn [19].
3. Fully discrete spectral approximations

Following [13], and with the help of the above cubature and the hyperinterpolation procedures, we first

introduce approximations to the integral operators (2.31) in the space Pn.

3.1. Discrete integral operators

The operators M and N defined in (2.31)–(2.36) contain weakly singular components M1 and N1 and

smooth components M2 and N2. We approximate these in different ways.

3.1.1. Weakly singular components

To deal with the weak singularity in M1, N1 , we introduce a change of coordinate system on oB, that
will yield transformed operators with kernels which are singular only at one point on the sphere, namely the

north pole. To this end, for each x̂ 2 oB, we introduce a 3� 3 orthogonal matrix Tx̂ which carries x̂ to the

north pole: Tx̂x̂ ¼ ð0; 0; 1ÞT ¼ n̂. If x̂ ¼ pðh;/Þ, then an explicit form of Tx̂ is

Tx̂ :¼ Pð/ÞQð�hÞPð�/Þ; ð3:1Þ

where P ðwÞ and QðwÞ are 3� 3 matrices corresponding to positive rotations by w about the z-axis and

y-axis, respectively,

P ðwÞ :¼
cosw � sinw 0

sinw cosw 0

0 0 1

0
@

1
A; QðwÞ :¼

cosw 0 sinw
0 1 0

� sinw 0 cosw

0
@

1
A: ð3:2Þ

The matrix Tx̂ is then continuous in x̂. At this point, it is useful to introduce an induced linear transfor-
mation Tx̂ on CðoBÞ as

Tx̂WðẑÞ ¼ WðT�1
x̂ ẑÞ; ẑ 2 oB; W 2 CðoBÞ: ð3:3Þ

For coordinate transformation of the kernels in (2.34)–(2.36), it is convenient to introduce a bivariate

analogue of (3.3), also denoted Tx̂:

Tx̂Wðẑ1; ẑ2Þ ¼ WðT�1
x̂ ẑ1; T�1

x̂ ẑ2Þ; ẑ1; ẑ2 2 oB; W 2 CðoB� oBÞ: ð3:4Þ

For x̂; ẑ 2 oB, if we write ŷ ¼ T�1
x̂ ẑ, the orthogonality of Tx̂ yields a useful identity

jx̂� ŷj ¼ jT�1
x̂ ðn̂� ẑÞj ¼ jn̂� ẑj: ð3:5Þ

We shall describe our approximation in detail only for the operator M1; the procedure for N1 is

analogous. Using (3.3)–(3.5) and the fact that surface measure on oB is invariant under orthogonal

transformations, we can write M1 as

M1Wðx̂Þ ¼
Z
oB

1

jn̂� ẑjTx̂M1ðn̂; ẑÞTx̂WðẑÞ dsðẑÞ; W 2 CðoBÞ: ð3:6Þ
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There are two important gains from using the rotated coordinate system in (3.6). One is that, if we now

rewrite M1 using spherical polar coordinates, then it turns out not to have a singularity at all: for all

ẑ ¼ pðh;/Þ 2 oB, the quantity jn̂� ẑj ¼ 2 sinðh=2Þ is cancelled out by the surface element dsðẑÞ ¼ sin hdhd/.
Furthermore, it can be shown that [13, Lemma 4.6] the map ðh;/Þ ! Tx̂M1ðn̂; pðh;/ÞÞ is smooth.

The latter observation suggests that it may be reasonable to approximate the term Tx̂M1ðn̂; ẑÞTx̂WðẑÞ in
(3.6) using a hyperinterpolation operator of the type defined in (2.44). Let Ln0 be this hyperinterpolation

operator, defined through a discrete inner product ðW1;W2Þm0 :¼ Q0
m0 ðW1W2Þ, where, analogously to (2.40),

Q0
m0 is a rule with points and weights ẑq0 , and gq0 , for q

0 ¼ 1; � � � ;m0, i.e.

Q0
m0W ¼

Xm0

q0¼1

gq0Wðẑq0 Þ:

We assume this rule is exact for spherical polynomials of degree 2n0. Our approximation M1;n0 to M1 in

(3.6) is then defined as

M1;n0Wðx̂Þ :¼
Z
oB

1

jn̂� ẑjLn0 fTx̂M1ðn̂; �ÞTx̂Wð�ÞgðẑÞ dsðẑÞ; ð3:7Þ

¼
Xn0
l¼0

X
jjj6 l

4p
2lþ 1

ðTx̂M1ðn̂; �ÞTx̂Wð�Þ; Yl;jð�ÞÞm0Yl;jðn̂Þ; ð3:8Þ

where we used (2.44) (with n replaced by n0 and m replaced by m0) and (2.38). More specifically,

M1;n0Wðx̂Þ ¼
Xn0
l¼0

X
jjj6 l

Xm0

q0¼1

4p
2lþ 1

gq0Tx̂M1ðn̂; ẑq0 ÞTx̂Wðẑq0 ÞYl;jðẑq0 ÞYl;jðn̂Þ: ð3:9Þ

Using the addition theorem for spherical harmonics [8], the representation for M1;n0 in (3.9) can be sim-
plified as

M1;n0Wðx̂Þ ¼
Xm0

q0¼1

gq0a
n0

q0Tx̂M1ðn̂; ẑq0 ÞTx̂Wðẑq0 Þ; W 2 CðoBÞ; ð3:10Þ

where an
0
q0 :¼

Pn0

l¼0 Plðn̂ � ẑq0 Þ. We note that for the (superalgebraic) convergence of M1;n0 to M1 it is im-

portant to choose n0 > n (see Appendix A and [13]). For rest of the paper, we assume: n0 is dependent on n
and n0ðnÞ > n. (For our computations, we took n0 ¼ 2n.)

Similarly, we approximate N1 in (2.33) by

N1;n0Wðx̂Þ :¼
Xm0

q0¼1

gq0a
n0

q0Tx̂N1ðn̂; ẑq0 ÞTx̂Wðẑq0 Þ; W 2 CðoBÞ: ð3:11Þ
3.1.2. Smooth components

To approximate M2;N2 in (2.32) and (2.33), we write

M2Wðx̂Þ ¼
Z
oB
Tx̂M2ðn̂; ẑÞTx̂WðẑÞ dsðẑÞ; W 2 CðoBÞ

and define an approximation M2;n0 for M2 as

M2;n0Wðx̂Þ :¼
Z
oB
Ln0 fTx̂M2ðn̂; �ÞTx̂Wð�ÞgðẑÞ dsðẑÞ; W 2 CðoBÞ:
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Using the definition of Ln0 and the orthonormality of the spherical harmonics

M2;n0Wðx̂Þ ¼ ðTx̂M2ðn̂; �ÞTx̂Wð�Þ; 1Þm0 ¼
Xm0

q0¼1

gq0Tx̂M2ðn̂; ẑq0 ÞTx̂Wðẑq0 Þ: ð3:12Þ

Similarly, we define

N2;n0Wðx̂Þ :¼
Xm0

q0¼1

gq0Tx̂N2ðn̂; ẑq0 ÞTx̂Wðẑq0 Þ; W 2 CðoBÞ: ð3:13Þ

Combining (3.10)–(3.13), we obtain the approximations to M;N:

Mn0Wðx̂Þ :¼ ½M1;n0 þM2;n0 �Wðx̂Þ; Nn0Wðx̂Þ :¼ ½N1;n0 þN2;n0 �Wðx̂Þ: ð3:14Þ
3.2. Fully discrete approximations on the surface

Using the discrete operators in (3.14), our fully discrete scheme for (2.30), written in operator form, is:

find Wn 2 Pn such that

Wn þLnMn0Wn ¼ ½aLn þLnNn0Ln�H : ð3:15Þ

To implement this we set

Wn ¼
Xn

l¼0

X
jjj6 l

xljYl;j; ð3:16Þ

and compute the coefficients xlj by solving the system

ðWn; Yl0;j0 Þm þ ðMn0Wn; Yl0 ;j0 Þm ¼ aðH ; Yl0 ;j0 Þm þ
Xn

l¼0

X
jjj6 l

ðNn0Yl;j; Yl0 ;j0 ÞmðH ; Yl;jÞm;

for l0 ¼ 0; . . . ; n; jj0j6 l0: ð3:17Þ

Note that, written this way, our algorithm looks like a discrete Galerkin method. However, it is shown in

[13] that, after a simple transformation, it can also be written as a variant of the Nystr€om method of

Wienert (see [8, p. 83;22]), to be solved for a slightly different dependent variable. The reason we do not use
the Nystr€om formulation is that in this case the corresponding linear system has a dimension about twice

that of the discrete Galerkin system considered here (see [13]).

Inserting (3.16) into (3.17) we see that x :¼ ðxljÞ solves

½IþM�x ¼ ½aIþN�h; ð3:18Þ

where for l; l0 ¼ 0; . . . ; n, jjj6 l, jj0j6 l0 the l0j0, lj entry of the matrices and the l0j0th component of h are

given by

Ml0j0;lj ¼ ðMn0Yl;j; Yl0 ;j0 Þm; Il0j0;lj ¼ dl0ldj0j;

Nl0j0 ;lj ¼ ðNn0Yl;j; Yl0;j0 Þm; hl0j0 ¼ ðH ; Yl0;j0 Þm:
ð3:19Þ

This scheme is a more practical variant of the one proposed in [13], where the approximation of the RHS

layer operator in (2.30) was omitted. Here we use the fact that when H is smooth, it will be sufficient to

approximate it to the same accuracy as we expect for the solution of (2.30).
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We compute the corresponding approximation of the solution w of (2.3) by setting

wnðxÞ :¼ Wnðx̂Þ; x ¼ qðx̂Þ 2 oD: ð3:20Þ

In Appendix A, Theorem A.1, we prove that wn converges superalgebraically to w. More precisely, if the
given data are smooth, then for any r > 0, the maximum error on oD, denoted by kw� wnk1;oD, is of order

Oðn�rÞ.

3.3. Implementation

To complete the practical description of the first part of our algorithm to compute the density Wn of the

combined approximate single–double-layer acoustic operators, all that remains is to describe the efficient

computation of the d2 entries of the d � d layer matrices M, N, given by (3.19), where d ¼ ðnþ 1Þ2. We
show that these matrices can be set up in Oðd2:5Þ operations, even without using any fast transforms. As

mentioned in Section 1, in the main and most expensive part of the algorithm associated with rotated

harmonics, we describe below an efficient stable practical approach, different from the ideas given in [13,22].

It is sufficient to describe the details for the matrixM. Recall from (3.19), (2.41), (3.14), (3.10), and (3.12)

that for l; l0 ¼ 0; . . . ; n, jjj6 l, jj0j6 l0, we have

Ml0j0 ;lj ¼
Xm
q¼1

fq
Xm0

q0¼1

gq0 an
0

q0Tx̂qM1ðn̂; ẑq0 Þ
h

þTx̂qM2ðn̂; ẑq0 Þ
i
Tx̂qYl;jðẑq0 ÞYl0;j0 ðx̂qÞ: ð3:21Þ

Each entry of the d � d matrix M consists of the approximation of a double integral over the surface oB
and each integral over oB uses function evaluations at OðdÞ points, so the complexity of assembly of M is

potentially Oðd4Þ ¼ Oðn8Þ. We device an efficient assembly algorithm which reduces this to Oðd2:5Þ ¼ Oðn5Þ.
(Note that Oðn4Þ would be optimal complexity for the matrix assembly. We are willing to tolerate this

complexity growth since the method is superalgebraically convergent.)
Recalling that the quadrature rules on the sphere which we use are defined using points of latitude and

longitude (2.42), we write

ðW1;W2Þm ¼
X2nþ1

r¼0

Xnþ1

s¼1

lrmsW1ðpðhs;/rÞÞW2ðpðhs;/rÞÞ;
ðW1;W2Þm0 ¼
X2n0þ1

r0¼0

Xn0þ1

s0¼1

nr0gs0W1ðpðHs0 ;Ur0 ÞÞW2ðpðHs0 ;Ur0 ÞÞ

and hence we can rewrite (3.21) as

Ml0j0 ;lj ¼
X2nþ1

r¼0

Xnþ1

s¼1

lrms
X2n0þ1

r0¼0

Xn0þ1

s0¼1

nr0gs0 an
0

s0Tpðhs;/rÞM1ðn̂; pðHs0 ;Ur0 ÞÞ
h

þTpðhs;/rÞM2ðn̂; pðHs0 ;Ur0 ÞÞ
i
Tpðhs;/rÞYl;jðpðHs0 ;Ur0 ÞÞYl0;j0 ðpðhs;/rÞÞ; ð3:22Þ

where an
0

s0 ¼
Pn0

l¼0 PlðcosHs0 Þ.
Since the approximation space Pn is invariant under rotations, the rotated spherical harmonicTpðhs;/rÞYl;j

can be written as a linear combination of spherical harmonics of degree l. However, the efficient and stable

computation of the associated Fourier coefficient matrices in this expansion (for all l ¼ 0; . . . ; n, jjj6 l,
r ¼ 0; . . . ; 2nþ 1, s ¼ 1; . . . ; nþ 1) is required.
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As in (3.3), for a given orthogonal matrix X, we denote the induced linear transformation by TðXÞ, i.e.
TðXÞWðẑÞ ¼ WðX�1ẑÞ. Using (3.1) and (3.2), we have

Tpðhs;/rÞ ¼ TðP ð/rÞÞTðQð�hsÞÞTðPð�/rÞÞ: ð3:23Þ

It is easy to check that positive rotation of Yl;jðh;/Þ by an angle b about the z-axis (see (3.2)) yields

Yl;jðh;/� bÞ, equivalently

TðPðbÞÞYl;j ¼ e�ijbYl;j: ð3:24Þ

However, the representation of the rotated spherical harmonics about the y-axis is not so simple as in

(3.24). Using the fact that the result of rotating Yl;j is also a spherical harmonic of the same degree (l), we
can certainly write

TðQðaÞÞYl;j ¼
X
j~jj6 l

dðlÞ
~jj
ðaÞYl;~j; ð3:25Þ

where dðlÞðaÞ is the required ð2lþ 1Þ � ð2lþ 1Þ Fourier coefficient matrix. A possible representation of this

(see [2, p. 22;13]) is

dðlÞðaÞ~jj ¼
X
t

ð�1Þt ½ðlþ
~jÞ!ðl� ~jÞ!ðlþ jÞ!ðl� jÞ!�1=2

ðlþ ~j� tÞ!ðl� j� tÞ!t!ðt þ j� ~jÞ!
cos

a
2

� 	2lþ~j�j�2t
sin

a
2

� 	2tþj�~j
ð3:26Þ

with the sum over all t ¼ 0; 1; . . . for which the arguments of the factorials are non-negative. Further, we

have the following symmetry properties [2, p. 147]:

dðlÞ
~jj
ðaÞ ¼ ð�1Þ~j�jdðlÞ

j~j
ðaÞ ¼ dðlÞ

�j�~jðaÞ ¼ dðlÞ
j~j
ð�aÞ: ð3:27Þ

We found that computation of dðlÞ using the formula (3.26) for higher degree harmonics (over 25) leads to a

marked reduction in the accuracy of the computed solution, due to the subtraction error arising from the

fact that (3.26) contains many terms of similar magnitude but with alternating signs. To find an efficient and

stable formula for representing Tpðhs;/rÞYl;j as a linear combination of spherical harmonics which both

exploits the simple formula (3.24) but avoids the difficulties associated with (3.25) and (3.26), we proceed as

follows.

Using (3.2) we rewrite Qð�hsÞ as

Qð�hsÞ ¼ P ðp=2ÞQðp=2ÞP ð�hsÞQð�p=2ÞP ð�p=2Þ: ð3:28Þ

Hence from (3.23), with C�
Z ¼ TðP ð�p=2ÞÞ and C�

Y ¼ TðQð�p=2ÞÞ, we get

Tpðhs;/rÞ ¼ TðP ð/rÞÞCþ
ZC

þ
Y TðPð�hsÞÞC�

Y C
�
ZTðP ð�/rÞÞ: ð3:29Þ

Using (3.24), (3.25), (3.29) and the fact that dðlÞ
~jj
ðp=2Þ ¼ dðlÞ

j~j
ð�p=2Þ (see (3.27)), it can be shown that

Tpðhs;/rÞYl;j ¼
X
j~jj6 l

Fsl~jje
iðj�~jÞ/r Yl;~j; ð3:30Þ

where

Fsl~jj ¼ eiðj�
~jÞp=2

X
jmj6 l

dðlÞ
~jm
ðp=2ÞdðlÞ

jm ðp=2Þeimhs : ð3:31Þ
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In order to compute the ð2lþ 1Þ � ð2lþ 1Þ matrix Fsl, we observe from (3.26) that

dðlÞ
~jj
ðp=2Þ ¼ 2�l ðlþ ~jÞ!ðl� ~jÞ!

ðlþ jÞ!ðl� jÞ!

" #1=2 Xlþ~j
t¼0

ð�1Þt lþ j
lþ ~j� t

� �
l� j
t

� �

¼ 2
~j ðlþ ~jÞ!ðl� ~jÞ!

ðlþ jÞ!ðl� jÞ!

" #1=2

P ðj�~j;�j�~jÞ
lþ~j ð0Þ; ð3:32Þ

where for given qð¼ lþ ~jP 0Þ and non-negative integers að¼ j� ~jÞ, bð¼ �j� ~jÞ, P ða;bÞ
q ð0Þ is the normalized

Jacobi polynomial evaluated at zero [21, p. 68]

P ða;bÞ
q ð0Þ ¼ 2�q

Xq

t¼0

ð�1Þt qþ a
q� t

� �
qþ b
t

� �
: ð3:33Þ

For j� ~j < 0 or �j� ~j < 0, we can compute dðlÞðp=2Þ~jj using the symmetry relation (3.27) together with the

identity (3.32) for the case ~j6 0, jjj6 � ~j. Note that the final formula (3.32) for dðlÞ
~j;j
ð/=2Þ now contains no

possibility of subtraction error.

If we denote x̂rs ¼ pðhs/rÞ, ŷr
0 ;s0
rs ¼ T�1

pðhs;/rÞpðHs 0 ;Ur 0 Þ and the normalized coefficient of Yl;j in (2.37) by cjl,
using (3.24) and (2.37) in (3.22), we get

Ml0j0 ;lj ¼
X2nþ1

r¼0

Xnþ1

s¼1

lrms
X2n0þ1

r 0¼0

Xn0þ1

s0¼1

nr 0gs 0 an
0

s0M1ðx̂rs; ŷ
r 0s0

rs Þ
�

þM2ðx̂rs; ŷ
r 0s0

rs Þ
�

�
X
j~jj6 l

eiðj�
~jÞ/r Fsl~jjc

~j
l P

j~jj
l ðcosHs0 Þei~jUr 0 cj

0

l0 P
jj 0 j
l0 ðcos hsÞe�ij 0/r : ð3:34Þ

Thus, the combined acoustic layer d � d matrix M with Oðn4Þ elements can be set up by successively

computing each of the following arrays depending on the four labels (each of which is sum with at most
2n0 þ 2 elements), can be computed in Oðn5Þ ¼ Oðd2:5Þ operations:

E1
srs 0~j ¼

X2n0þ1

r 0¼0

nr 0M1ðx̂rs; ŷ
r 0s0

rs Þei~jUr 0 ; E2
srs 0~j ¼

X2n0þ1

r 0¼0

nr 0M2ðx̂rs; ŷ
r 0s0

rs Þei~jUr 0 ;

Dsrl~j ¼
Xn0þ1

s 0¼1

gs0 an
0

s0E
1
srs0~j

h
þ E2

srs 0~j

i
c
~j
l P

j~jj
l ðcosHs0 Þ;

Csrlj ¼
X
j~jj6 l

Dsrl~je
iðj�~jÞ/r Fsl~jj; Bsj 0lj ¼

X2nþ1

r¼0

Csrljlre
�ij 0/r ;

Ml0j 0;lj ¼
Xnþ1

s¼1

Bsj 0ljmsc
j 0

l0 P
jj 0 j
l0 ðcos hsÞ:

The arrays E1, E2 are computed, stored, used to compute D and can then be discarded. Then arrays D, C, B
and M are computed from each other in a similar way. The result is an algorithm of complexity Oðn5Þ.

The fast Fourier transform (FFT) can be used to speed up the calculation of the above arrays in the
longitudinal direction and for calculating F in (3.31). Further, for spherical harmonics of degrees over 100,

the fast transform for spherical harmonics (or fast Legendre transform along the latitudinal direction, see

[17] and references therein) can be used to reduce the complexity. (For the computational results presented

in Section 4, we used only the FFT, since in our superalgebraically convergent algorithm, spherical
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harmonics of degree less than 100 are enough to achieve good accuracy even for large acoustic obstacles of

size up to 24 times the wavelength.)

In the next two subsections, we describe the second part of our algorithm to compute approximate
scattered and far fields using the approximate density Wn of the combined single–double-layer acoustic

operators.

3.4. Fully discrete approximations on the exterior region

We outline how our numerical solution of the surface integral equation (2.3) can be used to obtain

approximate PDE solutions in the exterior by approximating (2.7). The exact solutions on the exterior

region, given by (2.10), (2.14) and (2.17), can be written in the general form

wðxÞ ¼
Z
oD
½~mðx; yÞwðyÞ þ ~nðx; yÞ~hðyÞ� dsðyÞ

¼
Z
oB
½ ~MxðŷÞW ðŷÞ þ ~NxðŷÞ ~HðŷÞ� dsðŷÞ; x 2 R3 n �D; ð3:35Þ

where for each fixed x 2 R3 n �D, the smooth functions ~Mx, ~Nx and ~H are defined, for ŷ 2 oB, as

~MxðŷÞ :¼ ~mðx; qðŷÞÞJðŷÞ; ~NxðŷÞ :¼ ~nðx; qðŷÞÞJðŷÞ; ~HðŷÞ ¼ ~hðqðŷÞÞ; ð3:36Þ
and W is the unique solution of (2.30).

Since we can compute a superalgebraic approximation Wn to W , given by (3.16), and since smooth

data ~H on oB can be well approximated by Ln
~H , a natural approximation wnðxÞ to wðxÞ; x 2 R3 n �D is

given by

wnðxÞ ¼
Z
oB

~MxðŷÞWnðŷÞ
h

þ ~NxðŷÞLn
~HðŷÞ

i
dsðŷÞ;

¼
Xn

l¼0

X
jjj6 l

xlj

Z
oB

~MxðŷÞYl;jðŷÞ dsðŷÞ
�

þ ~hlj

Z
oB

~NxðŷÞYl;jðŷÞ dsðŷÞ
�
; ð3:37Þ

where xlj is the solution of (3.18) and ~hlj ¼ ð ~H ; Yl;jÞm.
However, since the integrals in (3.37) cannot be evaluated analytically, wn is not a practically computable

approximation. We resolve this problem by instead computing the fully discrete approximation (again
denoted by wn) given by the formula

wnðxÞ ¼
Xn

l¼0

X
jjj6 l

xlj

Z
oB
ðLn

~MxÞðŷÞYl;jðŷÞ dsðŷÞ
�

þ ~hlj

Z
oB
ðLn

~NxÞðŷÞYl;jðŷÞ dsðŷÞ
�
; ð3:38Þ

where Ln : CðoBÞ ! Pn is the conjugate form of the discrete operator in (2.44), defined as

LnW ¼
Xn

l¼0

X
jjj6 l

ðW; Y l;jÞmY l;j; W 2 CðoBÞ: ð3:39Þ

Using (3.39), the orthonormality of spherical harmonics and (2.41), we get

wnðxÞ ¼
Xn

l¼0

X
jjj6 l

xlj
~Mx; Y l;j

� 	
m

n
þ ~hlj ~Nx; Y l;j

� 	
m

o

¼
Xn

l¼0

X
jjj6 l

xlj
~Mm
lj ðxÞ

n
þ ~hlj ~Nm

lj ðxÞ
o
; x 2 R3 n �D; ð3:40Þ
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where for l ¼ 0; . . . ; n, jjj6 l, the quantities ~Mm
lj ðxÞ :¼

Pm
q¼1 fq ~Mxðx̂qÞYl;jðx̂qÞ and

~Nm
lj ðxÞ :¼

Pm
q¼1 fq ~Nxðx̂qÞYl;jðx̂qÞ can be pre-computed, independently of the assembly of (3.18).

3.5. Fully discrete approximations of far field patterns

Our approach to compute approximations, denoted by wn;1, to the far field pattern w1 in (2.8) is

analogous to the exterior region computation described in Section 3.4. The main changes are to replace ~Mx,
~Nx by Mf

x̂ , N
f
x̂ , x̂ 2 oB, where

Mf
x̂ ðŷÞ :¼ mf ðx̂; qðŷÞÞJðŷÞ; Nf

x̂ ðŷÞ :¼ nf ðx̂; qðŷÞÞJðŷÞ; ŷ 2 oB: ð3:41Þ

Thus our fully discrete approximation to the far field pattern w1 of the solution w of (2.7) at any given

direction x̂ 2 oB is defined as

wn;1ðx̂Þ :¼
Xn

l¼0

X
jjj6 l

xljM
f ;m
lj ðx̂Þ

n
þ ~hlj ~N

f ;m
lj ðx̂Þ

o
; x 2 R3 n �D; ð3:42Þ

where for l ¼ 0; . . . ; n, jjj6 l, the quantities Mf ;m
lj ðx̂Þ :¼

Pm
q¼1 fqM

f
x̂ ðx̂qÞYl;jðx̂qÞ and

Nf ;m
lj ðx̂Þ :¼

Pm
q¼1 fqN

f
x̂ ðx̂qÞYl;jðx̂qÞ.

We prove in Appendix A, under suitable conditions, the superalgebraic convergence of wn to the solution

w of (2.3) on the exterior region, and of the approximate far field pattern wn;1 to the actual far field pattern

w1 (see Theorems A.2 and A.3). The results ((A.3), (A.7), and (A.11)) suggest that to compute accurate

approximate solutions, it should be enough to set up and solve relatively small d ¼ ðnþ 1Þ2-dimensional

systems of the form (3.18). In practice, we found that n6 20 is sufficient for frequencies in the resonance

region and n < 100 for high frequency scattering (with wavelengths about 0.04 times the size of obstacles).

In contrast, for high frequency scattering, algorithms [3,4,20] require about a quarter to half a million

unknowns (but of course these latter algorithms use efficient fast techniques such as the multipole algorithm
to create practical codes).
4. Numerical experiments

In this section, we use our algorithm to compute scattered and far fields induced by plane waves im-

pinging on a variety of smooth and non-smooth (sound-soft, sound-hard and absorbing) three-dimensional

obstacles with Dirichlet, Neumann and Robin boundary conditions. We consider frequencies in the res-
onance region (with size of the obstacle close to one wavelength) as well as large obstacles with acoustic size

up to 24 times the wavelength. We compare the efficiency of our algorithm (denoted by (GG) in the tables

below) with other recent algorithms for this problem [3,4,6,20]. In particular, our main comparison is with a

recent algorithm of Bruno and Kunyansky (BK) which has been applied in [3,4] to the exterior Helmholtz

equation with Dirichlet boundary condition. The BK algorithm has been demonstrated in [3,4] to be very

competitive in comparison with other recent codes such as [6,20] (although the latter algorithms are for

electromagnetic scattering).

For numerical experiments, we use various smooth and non-smooth obstacles with diameter siz obs.
These include spherical, ellipsoidal, bean, peanut, ogive, NASA almond and cone–sphere shaped three-

dimensional domains with corresponding surfaces denoted, respectively, by sphðsiz obsÞ, ellða; b; cÞ,
beanðsiz obsÞ, peaðsiz obs; aÞ, ogiveðsiz obsÞ, NASA almðsiz obsÞ and cone sphðsiz obsÞ.

For the ellipsoid, the x; y; z axes diameters are, respectively, a; b; c so that siz obs ¼ maxfa; b; cg. The bean
shaped obstacle beanðsiz obsÞ is defined using a radius parameter R (with siz obs ¼ 2R) by the equation [3]
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x2

0:64 1� 0:1 cosðpz=RÞ

 �þ 0:3R cosðpz=RÞ þ y


 �2
0:64 1� 0:4 cosðpz=RÞ


 �þ z2 ¼ R2:

The peanut shaped obstacle with siz obs ¼ 1 and angle parameter a is defined implicitly as

x2 þ y2

4
þ z2 ¼ Rðz; aÞ;

where

Rðz; aÞ ¼ cðaÞ�1½pðzÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ p2ðzÞ

p
�; pðzÞ ¼ 2z2 � 1; cðaÞ ¼ 4ð1þ

ffiffiffiffiffiffiffiffiffiffiffi
aþ 1

p
Þ:

The parameter a > 0 in peaðsiz obs; aÞ determines the narrowness in the middle of the peanut shape, and as

a ! 0 the surface becomes more constricted along its equator in the plane z ¼ 0.

The ogive, NASA almond and cone–sphere obstacles are defined and used as benchmark radar targets

for electromagnetic scattering in [23]. These targets can be described using the spherical coordinate system

as below (see Fig. 1):
Fig. 1. Some of the obstacles used in our computation.



Fig. 2. Visualisation of scattering of a plane wave uIðxÞ ¼ eikx�d̂ (with k ¼ 100:531) propagating in the x-direction (with d̂ ¼ ½1; 0; 0�) by
a peanut shaped sound-soft obstacle of size sixteen times the wavelength k ¼ 2p=k, on a yz-plane. The scattered field is denoted by uS

and the total field is u ¼ uI þ uS.
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ogiveð10Þ ¼ q01ðhÞ; q02ðh;/Þ; q03ðh;/Þ

 �

2 R3 : 0
�

6 h6 p; 06/6 2p

;

where

q01ðhÞ ¼ �5þ 10h=p; q02ðh;/Þ ¼ f ðhÞ cosð/� pÞ=d0; q03ðh;/Þ ¼ f ðhÞ sinð/� pÞ=d0;

f ðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðq01ðhÞ=5Þ

2
sin2ð22:62�Þ

q
� 1þ d0; d0 ¼ 1� cosð22:62�Þ:
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NASA almð9:936Þ ¼ qa1ðhÞ; qa2ðh;/Þ; qa3ðh;/Þ

 �

2 R3 : 0
�

6 h6 p; 06/6 2p

;

where

qa1ðhÞ ¼ dat; t ¼ �aa þ h=p; da ¼ 9:936; aa ¼ 0:41667; ba ¼ 2:08335; ca ¼ 0:96

with gðt; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðt=aÞ2

q
, w ¼ /� p for �aa 6 t6 0,

qa2ðh;/Þ ¼ 0:193333dagðt; aaÞ cosðwÞ; qa3ðh;/Þ ¼ 0:064444dagðt; aaÞ sinðwÞ;

and for 0 < t6 0:58333.

qa2ðh;/Þ ¼ 4:83345da½gðt; baÞ � ca� cosðwÞ; qa3ðh;/Þ ¼ 1:61115da½gðt; baÞ � ca� sinðwÞ:
cone sphð27:127Þ ¼ qc1ðhÞ; qc2ðh;/Þ; qc3ðh;/Þ

 �

2 R3 : 0
�

6 h6 p; 06/6 2p

;

where

qc1ðhÞ ¼ t; t ¼ �ac þ hðbc þ acÞ=p; ac ¼ 23:821; bc ¼ 3:306; cc ¼ 2:947

with h1ðtÞ ¼ cc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ððt � 0:359Þ=ccÞ

2
q

, h2ðtÞ ¼ h1ð0Þðt þ acÞ=ac, w ¼ /� p,

qa2ðh;/Þ ¼ h2ðtÞ cosðwÞ; qa3ðh;/Þ ¼ h2ðtÞ sinðwÞ for � ac 6 t6 0;

qa2ðh;/Þ ¼ h1ðtÞ cosðwÞ; qa3ðh;/Þ ¼ h1ðtÞ sinðwÞ for 0 < t6 bc:

We considered sound-soft, sound-hard and absorbing acoustic scattering problems induced by plane
waves with various incident directions and computed the resulting scattered and far fields over a thousand

observed directions. Throughout this section, for the plane waves case, the exact far field is denoted by upw1
and the approximated far field pattern, computed using the solution Wn described in Sections 3.2 and 3.5, is

denoted by upwn;1.
We know the analytical representation of upw1 only for the sound-soft sphere case, so for plane wave

scattering from other objects we are unable to compute exact errors. Thus, in order to calculate errors and

demonstrate the convergence of our algorithm in the case of other scatterers, we compute the far field

induced by an off-centre source of radiation inside all our experimental scatterers. We used the Dirichlet,
Neumann and Robin boundary conditions induced on the scatterers by the off-centre point source located

inside the obstacle at a distance 0.1 from the origin in the direction h ¼ 30�, / ¼ 90�. In this case the exact

solution is known, it is the field created by the source itself. For the point source radiation case, we denote

corresponding exact far field by u1 and our computed far field by un;1. For the case of non-spherical

acoustic scattering, for comparison with [3–5], we will present maximum norm errors for the far field in-

duced by the point source radiation.

A convergence study of this type gives a good demonstration of the efficiency of an acoustic scattering

algorithm based on solving integral equations. However, to get a firm idea of accuracy, it is also practically
important to study the convergence of far fields induced by plane waves, for example by fixing some

forward and backward incident and observed directions. Such convergence results have been tabulated for

two-dimensional non-spherical scattering in [8, p.72]. Accordingly, following [3–5,8], we also give an ex-

tensive convergence study of far fields induced by plane wave incident fields. Here we do not give a

comparison with other methods (this case is not reported in [3–5]). However, we remark that (as one may

observe from results below for ellipsoidal obstacles), one may get faster convergence in the far field induced

by a point source than for that induced by a plane wave with the same frequency. This is naturally due to

the less oscillatory behaviour of the boundary data induced by the former. Hence a convergence study of
both cases seems to be necessary in order to get a good idea of how an algorithm will perform in practice.

In order to demonstrate superalgebraic convergence in the supremum norm, we computed the errors

kupw1 � upwn;1k1 (for spherical obstacles) and ku1 � un;1k1, by taking the maximum of errors obtained over
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1300 observed directions. Similar to other algorithms, our computational (and theoretical) convergence

results depend on the shape and acoustic size (k � siz obs) of a chosen obstacle. As in [3–5], our results

below demonstrate that spherical and ellipsoidal obstacles require fewer degrees of freedom compared to
the bean (and peanut) shaped obstacle and that the number of unknowns is dictated by the acoustic size

k � siz obs (or equivalently by siz obj=k, where k ¼ 2p=k is the wavelength).

We used a direct (LU-factorization) solver for the resulting full complex matrix systems. The linear

systems which we have to solve, although dense, are sufficiently small so that we could use a direct solver

(dimension about 9000 is the largest system solved in this paper). The CPU times given in this work are

compared with results obtained using a GMRES solver in [3–5]. The memory requirement in our com-

putations is essentially dominated by allocating memory for a d � d full complex matrix. Accordingly,

memory allocation in our algorithm is not as efficient as in [3–5].
In the tabulated results, the L2 norm relative pointwise RMS error in jupw1 ðx̂Þj2, denoted by �%, the rel-

ative L2 norm, denoted by �2 and the maximum norm �1 are defined as [3]

�% ¼ 100
1

4p

Z
oB

upw1 ðx̂Þ
��� ���2��(

� upwn;1ðx̂Þ
��� ���2�� upw1 ðx̂Þ

��� ���2�2 dsðx̂Þ
)1=2

; ð4:1Þ
�2 ¼
Z
oB

upw1 ðx̂Þ
����

� upwn;1ðx̂Þ
���2 dsðx̂Þ�1=2

, Z
oB

upwn;1ðx̂Þ
��� ���2 dsðx̂Þ� �1=2

; ð4:2Þ
�1 ¼ kupw1 � upwn;1k1: ð4:3Þ
4.1. Sound-soft smooth obstacle scattering problems

For the exterior Helmholtz problem with Dirichlet boundary conditions, we computed results using the

indirect formulation (2.10)–(2.12) with c ¼ siz obs=k. This is a standard choice – see, e.g. [3]. The tables below

demonstrate the high-order accuracy of our algorithm. Indeed in several places convincing exponential

convergence is observed, even for small values of n. We compare also the performance of our algorithm with

other state-of-the-art high-order scattering algorithms [3,4,6,20]. As in [3,4], we compare our CPU time with

only thematrix setup time reported in [6] for the FastScat and FISC algorithms (andwe computed �% from �dB
errors measured in decibels using the relation �% � 10 lnð10Þ�dB, see [3, p. 108]). The CPU time reported for
our algorithm is for the combined setup and solve phases of the algorithm. However, it should be noted that

(as acknowledged in [3]) the FastScat and FISC calculations are for electromagnetic scattering.

In Figs. 2(c) and (d), we visualise the real part and intensity of the total field induced by a plane wave

striking a peanut shaped sound-soft obstacle of diameter 16k, as depicted in Figs. 2(a) and (b).
Scattering by sound-soft obstacles of size 1.0k

n sphð1:0kÞ sphð1:0kÞ ellð1:0k; 0:75k; 0:50kÞ ellð1:0k; 0:25k; 0:25kÞ
k ¼ 6:283185 k ¼ 6:283185 k ¼ 0:785398 k ¼ 0:785398

kupw1 � upwn;1k1 ku1 � un;1k1 ku1 � un;1k1 ku1 � un;1k1
05 2.93139E) 03 9.7817E) 05 2.94689E) 03 2.88196E) 02

10 2.23937E) 10 4.8117E) 13 4.47165E) 06 1.88838E) 03

15 6.22260E) 14 2.5713E) 14 1.32438E) 08 8.97334E) 05



Scattering by sound-soft obstacles of size 1.0k

n beanð1:0kÞ peað1:0k; 1:0Þ peað1:0k; 0:25Þ
k ¼ 1:570796 k ¼ 6:283185 k ¼ 6:283185

ku1 � un;1k1 ku1 � un;1k1 ku1 � un;1k1
10 5.85399E) 03 8.93979E) 04 3.10283E) 02

15 2.06106E) 04 1.11009E) 05 2.86259E) 03
20 1.84441E) 05 7.73015E) 08 1.98638E) 04

Performance of GG (present), BK [3,4], FastScat [6] algorithms

Scattering of a plane wave eikx̂�d̂ by a sound-soft sphere of diameter 5.4k

Algorithm Unknowns Computer CPU time �% �2 �1

FastScat

(Nystrom)

5400 Sparc 10 1953 s

(setup)

2.23% – –

FastScat

(Galerkin)

5400 Sparc 10 38,803 s

(setup)

0.48% – –

BK 5430 Pentium II

Xeon, 400 MHz

1430 s 0.0025% – –

GG 676

(n ¼ 25)

SGI Origin

2400, 400 MHz

62 s 0.0002% 1.0E) 06 3.2E) 06

BK 93,726 Pentium II

Xeon, 400 MHz

>16 ha – 5.6E) 09 1.6E) 08

GG 961

(n ¼ 30)

SGI Origin

2400, 400 MHz

178 s 2.3E) 09% 1.3E) 11 3.3E) 11

aApproximately, based on 16 h CPU time for solutions with 87,318 unknowns (see [3,4] or results below for scattering of a plane

wave by a sphere of diameter 24k).

Scattering by sound-soft obstacles of size 8.0k

n sphð8:0kÞ sphð8:0kÞ ellð8:0k; 6:0k; 4:0kÞ ellð8:0k; 2:0k; 2:0kÞ
k ¼ 50:265482 k ¼ 50:265482 k ¼ 6:283185 k ¼ 6:283185

kupw1 � upwn;1k1 ku1 � un;1k1 ku1 � un;1k1 ku1 � un;1k1
30 2.30724E) 03 1.1819E) 12 2.00653E) 06 4.49177E) 04

35 7.85715E) 07 9.0183E) 13 3.97078E) 10 9.76850E) 06
40 4.01820E) 11 6.5099E) 13 1.28945E) 12 4.78929E) 07
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Scattering by sound-soft obstacles of size 8.0k

n beanð8:0kÞ peað8:0k; 1:0Þ peað8:0k; 0:25Þ
k ¼ 12:566370 k ¼ 50:265482 k ¼ 50:265482

ku1 � un;1k1 ku1 � un;1k1 ku1 � un;1k1
50 9.85025E) 05 4.94508E) 03 8.58038E) 03

55 3.74617E) 06 3.47032E) 04 1.51612E) 03
60 1.01728E) 07 1.58223E) 05 1.03131E) 04

Scattering by sound-soft obstacles of size 16.0k

n sphð16:0kÞ sphð16:0kÞ ellð16:0k; 12:0k; 8:0kÞ ellð16:0k; 4:0k; 4:0kÞ
k ¼ 100:530964 k ¼ 100:530964 k ¼ 12:566370 k ¼ 12:566370

kupw1 � upwn;1k1 ku1 � un;1k1 ku1 � un;1k1 ku1 � un;1k1
50 6.16346E) 01 3.0132E) 12 7.09172E) 04 4.78117E) 03

55 1.32466E) 02 3.0376E) 12 2.71990E) 06 6.31451E) 05

60 4.42319E) 05 2.6661E) 12 2.09927E) 09 1.27233E) 06

Scattering by sound-soft obstacles of size 16.0k

n beanð16:0kÞ peað16:0k; 1:0Þ peað16:0k; 0:25Þ
k ¼ 25:132741 k ¼ 100:530964 k ¼ 100:530964

ku1 � un;1k1 ku1 � un;1k1 ku1 � un;1k1
80 2.56078E) 03 2.17945E) 01 2.00576E) 01

85 3.12683E) 04 8.30092E) 02 9.63539E) 02

90 2.30818E) 05 2.04694E) 02 3.52205E) 02

Scattering by sound-soft obstacles of size 24.0k

n sphð24:0kÞ sphð24:0kÞ ellð24:0k; 18:0k; 12:0kÞ ellð24:0k; 6:0k; 6:0kÞ
k ¼ 150:796447 k ¼ 150:796447 k ¼ 18:849556 k ¼ 18:849556

kupw1 � upwn;1k1 ku1 � un;1k1 ku1 � un;1k1 ku1 � un;1k1
80 3.41556E) 02 2.7120E) 11 2.27858E) 06 8.98950E) 05

85 2.86857E) 04 2.7828E) 11 4.58837E) 09 5.22077E) 07
90 8.21942E) 07 2.7820E) 11 2.93156E) 11 4.06458E) 09
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Scattering of a plane wave eikx̂�d̂ by non-spherical sound-soft obstacles

Solution: Far field upwn;1ðd̂; x̂Þ, upwn;1ð�d̂; x̂Þ, d̂ ¼ ½1; 0; 0�, x̂ ¼ ½1; 1; 1�=
ffiffiffi
3

p

Obstacle n Real Imag Real Imag

(upwn;1ðd̂; x̂Þ) (upwn;1ðd̂; x̂Þ) (upwn;1ð�d̂; x̂Þ) (upwn;1ð�d̂; x̂Þ)
bean ð8kÞ,
k ¼ 12:5664

50 )1.211638040 )0.425347893 )0.703082440 )0.037623628
55 )1.211638015 )0.425347908 )0.703082439 )0.037623683
60 )1.211638014 )0.425347908 )0.703082438 )0.037623685

bean ð16kÞ,
k ¼ 25:1327

80 )0.763292922 )1.023656471 )0.524025819 0.098107599

85 )0.763292757 )1.023655960 )0.524025618 0.098107454

90 )0.763292738 )1.023655946 )0.524025593 0.098107445

pea ð8k; 0:25Þ,
k ¼ 50:2655

50 )0.010761380 0.059509554 )0.145594464 )0.113147447
55 )0.010788151 0.059517472 )0.145612450 )0.113153591
60 )0.010790682 0.059517694 )0.145613620 )0.113154213

pea ð16k; 0:25Þ,
k ¼ 100:5310

80 )0.180243971 )0.083941927 )0.207550479 )0.371539315
85 )0.180277359 )0.082725639 )0.207005811 )0.369927890
90 )0.180039932 )0.082676548 )0.206769636 )0.369908324

ell ð16k; 12k; 8kÞ,
k ¼ 12:5664

50 0.842667688 1.188820559 0.160488626 0.846546412

55 0.841248724 1.187593680 0.160922430 0.846980635

60 0.841255001 1.187587092 0.160924812 0.846977625

ell ð24k; 18k; 12kÞ,
k ¼ 18:8486

80 )1.400743352 0.300790376 )0.769442036 )0.383459664
85 )1.400745575 0.300780793 )0.769440067 )0.383456025
90 )1.400745555 0.300780760 )0.769440053 )0.383456047

Performance of GG (present), BK [3,4], FISC [20] algorithms

Scattering of a plane wave eikx̂�d̂ by a sound-soft sphere of diameter 24k

Algorithm Unknowns Computer CPU time (h) �% (RMS error) (%)

FISC 602,112 SGI Power Challenge

R8000

12 6.9

BK 26,214 Pentium II Xeon, 400 MHz 6.5 0.18

BK 87,318 Pentium II Xeon, 400 MHz 16 0.0014
GG 6889 (n ¼ 82) SGI Origin 2400, 400 MHz 5.8 0.19

GG 7744 (n ¼ 87) SGI Origin 2400, 400 MHz 9.3 0.0011
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Performance of GG (present) and BK [5] algorithms

Scattering by sound-soft non-spherical obstacles

Obstacle Algorithm Unknowns Computer CPU time

(min)

ku1 � un;1k1

ell ð16k; 12k; 8kÞ BK 265,020 AMD 1600+, 1.4 GHz 494 1.3E) 05

GG 3136 (n ¼ 55) SGI Origin 2400,

400 MHz

47 2.7E) 06

ell ð16k; 4k; 4kÞ BK 199,536 AMD 1600+, 1.4 GHz 675 1.4E) 04

GG 3136 (n ¼ 55) SGI Origin 2400,

400 MHz

47 6.3E) 05

bean ð16kÞ BK 238,646 AMD 1600+, 1.4 GHz 1003 1.7E) 05

GG 8649 (n ¼ 92) SGI Origin 2400,

400 MHz

777 7.9E) 06

ell ð24k; 18k; 12kÞ BK 265,020 AMD 1600+, 1.4 GHz 858 9.3E) 06

GG 6561 (n ¼ 80) SGI Origin 2400,

400 MHz

336 2.3E) 06

ell ð24k; 6k; 6kÞ BK 199,536 AMD 1600+, 1.4 GHz 720 2.6E) 04

GG 6561 (n ¼ 80) SGI Origin 2400,

400 MHz

335 9.0E) 05
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4.2. Sound-hard smooth obstacle scattering problems

The following selected results demonstrate the power of our algorithm for computations in the resonance
and high frequency regions for three-dimensional exterior Neumann problems for both the point source

radiation and plane wave acoustic scattering.
Scattering by sound-hard obstacles of size 1.1 k – Neumann

n beanð1:1kÞ peað1:1k; 1:0Þ peað1:1k; 0:25Þ
k ¼ 1:727876 k ¼ 6:911504 k ¼ 6:911504

ku1 � un;1k1 ku1 � un;1k1 ku1 � un;1k1
10 7.11578E) 02 1.57695E) 03 2.28875E) 02

15 4.66991E) 03 1.16830E) 05 1.48284E) 03

20 5.56065E) 04 7.07394E) 08 1.22790E) 04



Scattering by sound-hard obstacles of size 8.1 k – Neumann

n beanð8:1kÞ peað8:1k; 1:0Þ peað8:1k; 0:25Þ
k ¼ 12:723450 k ¼ 50:893801 k ¼ 50:893801

ku1 � un;1k1 ku1 � un;1k1 ku1 � un;1k1
50 2.95234E) 04 8.25592E) 06 1.10301E) 03

55 1.21654E) 05 2.17825E) 07 7.55252E) 05
60 3.59514E) 07 4.05182E) 09 7.38611E) 06

Scattering by sound-hard obstacles of size 16.0 k – Neumann

n beanð16:0kÞ peað16:0k; 1:0Þ peað16:0k; 0:25Þ
k ¼ 25:132741 k ¼ 100:530964 k ¼ 100:530964

ku1 � un;1k1 ku1 � un;1k1 ku1 � un;1k1
80 4.20005E) 03 1.44818E) 04 3.40975E) 02

85 3.45799E) 04 8.49506E) 06 1.10705E) 02
90 2.70156E) 05 4.22015E) 07 2.43972E) 03

Scattering of a plane wave eikx̂�d̂ by sound-hard obstacles – Neumann

Solution: Far field upwn;1ðd̂; x̂Þ, upwn;1ð�d̂; x̂Þ, d̂ ¼ ½1; 0; 0�, x̂ ¼ �½1; 1; 1�=
ffiffiffi
3

p

Obstacle n Real Imag Real Imag

ðupwn;1ðd̂; x̂ÞÞ ðupwn;1ðd̂; x̂ÞÞ ðupwn;1ð�d̂; x̂ÞÞ ðupwn;1ð�d̂; x̂ÞÞ
bean ð8:1kÞ,
k ¼ 12:7235

50 0.415261424 )0.505277949 0.438549342 )1.338746349
55 0.415257586 )0.505270217 0.438545727 )1.338751789
60 0.415257617 )0.505270015 0.438545604 )1.338751798

bean ð16:0kÞ,
k ¼ 25:1327

80 0.559103508 )0.245076660 )0.291237321 )1.378483777
85 0.559127902 )0.245065203 )0.291245398 )1.378511528
90 0.559128870 )0.245064721 )0.291246171 )1.378512892

pea ð8:1k; 0:25Þ,
k ¼ 50:8938

50 0.026594481 0.128380355 0.006540556 0.001711920

55 0.026665734 0.128349275 0.006637935 0.001707533

60 0.026667821 0.128346121 0.006642237 0.001704709

pea ð16:0k; 0:25Þ,
k ¼ 100:5310

80 0.041727559 0.349839234 0.089615803 )0.028435947
85 0.043566240 0.351311085 0.091114809 )0.026822423
90 0.043162994 0.350877127 0.090605571 )0.027221696
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4.3. Absorbing smooth obstacle scattering problems

We computed approximate solutions of the impedance boundary condition scattering problem with
Robin constant l ¼ 1. As in the Dirichlet and Neumann problem experiments, we obtained good

accuracy for all the geometries and the wave numbers considered in this paper. Here is a selection of

results.
Scattering by absorbing obstacles of size 8.1k – Robin l ¼ 1

n beanð8:1kÞ peað8:1k; 1:0Þ peað8:1k; 0:25Þ
k ¼ 12:723450 k ¼ 50:893801 k ¼ 50:893801

ku1 � un;1k1 ku1 � un;1k1 ku1 � un;1k1
50 2.64753E) 04 8.25994E) 06 1.07671E) 03

55 1.09092E) 05 2.18623E) 07 7.54619E) 05

60 3.22415E) 07 4.04770E) 09 7.24602E) 06

Scattering by absorbing obstacles of size 16.0k – Robin l ¼ 1

n beanð16:0kÞ peað16:0k; 1:0Þ peað16:0k; 0:25Þ
k ¼ 25:132741 k ¼ 100:53096 k ¼ 100:53096

ku1 � un;1k1 ku1 � un;1k1 ku1 � un;1k1
80 3.86799E) 03 1.40528E) 04 3.36103E) 02

85 3.26862E) 04 8.47871E) 06 1.08972E) 02

90 2.42218E) 05 4.21669E) 07 2.39322E) 03

Scattering by absorbing obstacles of size 1.1k – Robin l ¼ 1

n beanð1:1kÞ peað1:1k; 1:0Þ peað1:1k; 0:25Þ
k ¼ 1:727876 k ¼ 6:911504 k ¼ 6:911504

ku1 � un;1k1 ku1 � un;1k1 ku1 � un;1k1
10 2.84122E) 02 1.54524E) 03 2.38354E) 02

15 1.91105E) 03 1.11917E) 05 1.55407E) 03

20 2.18761E) 04 6.89745E) 08 1.25606E) 04



Scattering of a plane wave eikx̂�d̂ by absorbing obstacles – Robin l ¼ 1

Solution: Far field upwn;1ðd̂; x̂Þ; upwn;1ð�d̂; x̂Þ, d̂ ¼ ½1; 0; 0�, x̂ ¼ ½1; 1; 1�=
ffiffiffi
3

p

Obstacle n Real Imag Real Imag

(upwn;1ðd̂; x̂Þ) (upwn;1ðd̂; x̂Þ) (upwn;1ð�d̂; x̂Þ) (upwn;1ð�d̂; x̂Þ)
bean ð8:1kÞ,
k ¼ 12:7235

50 1.157322289 )0.215292184 0.311971960 )0.362405347
55 1.157313018 )0.215289339 0.311975072 )0.362401148
60 1.157312917 )0.215289154 0.311975191 )0.362401065

bean ð16:0kÞ,
k ¼ 25:1327

80 0.928403718 0.886621134 0.284685356 )0.166745117
85 0.928415863 0.886629309 0.284678019 )0.166760975
90 0.928416373 0.886629785 0.284677674 )0.166761669

pea ð8:1k; 1:0Þ,
k ¼ 50:8938

50 0.005081427 0.000776985 0.022830804 0.124490732

55 0.005172910 0.000780003 0.022899996 0.124466732

60 0.005176831 0.000778074 0.022901998 0.124464350

pea ð16:0k; 0:25Þ,
k ¼ 100:5310

80 0.085105780 )0.025378131 0.038948001 0.345352189

85 0.086474020 )0.023845559 0.040625060 0.346789662

90 0.085995837 )0.024256504 0.040245496 0.346359508
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4.4. Non-smooth obstacle scattering

In this section, we demonstrate fast convergence of our algorithm for obstacles with conical singularities

for frequencies in the resonance region and compare our results with those given in [4]. In this paper, for the

non-smooth obstacles, we restrict to low frequency scattering and we present our results for the sound-soft

case. We find that, despite the non-smoothness of the domain, reasonable accuracy is still obtained, es-

pecially for the NASA almond and ogive examples.
Performance of GG (present), BK [4] algorithms

Scattering by one-wavelength long sound-soft ogive

Algorithm Unknowns Computer CPU time (s) ku1 � un;1k1
BK 1568 Pentium II Xeon, 400 MHz 1380 2.5E) 03

GG 256 (n ¼ 15) SGI Origin 2400, 400 MHz 16 1.4E) 04

BK 6336 Pentium II Xeon, 400 MHz 13,005 3.8E) 05

GG 676 (n ¼ 25) SGI Origin 2400, 400 MHz 173 8.3E) 05

Scattering by sound-soft obstacles of size 1.0k

n NASA almð1:0kÞ ogiveð1:0kÞ cone sphð1:0kÞ
k ¼ 0:6283185 k ¼ 0:6323657 k ¼ 0:2316211

ku1 � un;1k1 ku1 � un;1k1 ku1 � un;1k1
05 6.73728E) 02 2.30540E) 02 2.18547E) 01

15 3.15581E) 03 1.40747E) 04 6.35614E) 02

25 2.68313E) 04 8.31994E) 05 3.27117E) 02
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Appendix A

In this section, we prove superalgebraic convergence properties of our fully discrete approximations on
the surface and on the exterior region, using results in [13] and functional analytic arguments.

Through this section, the space CðoBÞ of continuous functions on oB is equipped with the uniform norm

k � k1;oB and we also use the same notation for the corresponding operator norm. For r > 0, CrðoBÞ denotes
the space of all r times continuously differentiable functions on oB. We use similar notation for oD and

assume that the parametrisation map q : oB ! oD is smooth.

The hyperinterpolation operator defined in (2.44) has the following crucial boundedness and approxi-

mation properties [19]:

kLnk1;oB 6 cn1=2; kLnW�Wk1;oB 6 cr
1

nr�1=2
kWkr;oB; W 2 CrðoBÞ; ðA:1Þ

where (throughout this section) c; cr; c‘;r are generic constants independent of the approximation parameter

n. (The conjugate operator Ln in (3.39) also satisfies the bounds in (A.1).) The discrete layer operator Nn0

defined in (3.14) is a powerful approximation to N in the following sense [13, Theorem 5.2]:

kðNn0 �NÞLnWk1;oB 6 c‘
1

n‘
kWk1;oB; W 2 CðoBÞ and for any ‘ 2 N: ðA:2Þ

A similar estimate holds for kðMn0 �MÞLnWk1;oB.

We first prove that our algorithm for solving (2.3) converges superalgebraically.

Theorem A.1. Let w be the unique solution of (2.3) with a given data h. Let wn be as in (3.20), where Wn 2 Pn is

the unique solution of (3.15). If h 2 Crþ2ðoDÞ for some r > 0, then for n sufficiently large n, there exists cr > 0

such that

kw� wnk1;oD 6 cr
1

nr
kwkrþ1;oD

n
þ khkrþ2;oD

o
: ðA:3Þ

Proof. Following the proof of Theorem 5.1 in [13], we have for sufficiently large n, ðI þLnMn0 Þ�1
exists and

kðI þLnMn0 Þ�1k1;oB 6 cn1=2. Hence, for sufficiently large n, (3.15) has a unique solution Wn 2 Pn.

Let Un 2 Pn be the unique solution of

Un þLnMn0Un ¼ Ln½aI þN�H ; ðA:4Þ

a semi-discrete approximation of (2.30). For such an approximation, a direct application of results in [13]

yields the superalgebraic convergence property
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kW � Unk1;oB 6 cr
1

nr
kW krþ1;oB; ðA:5Þ

Now, using (3.15), (A.4), (A.1), (A.5), and (A.2), we get

kW � Wnk1;oB 6 kW � Unk1;oB þ kUn � Wnk1;oB

6 kW � Unk1;oB þ kðI þLnMn0 Þ�1
LnNn0LnHð � LnNHÞk1;oB

6 kW � Unk1;oB þ cnkNn0LnH �NHk1;oB

6 kW � Unk1;oB þ cnk Nn0ð �NÞLnHk1;oB þ cnkNðLnH � HÞk1;oB

6 cr
1

nr
kW krþ1;oB þ crn

1

nrþ1
kHk1;oB þ crn3=2

1

nrþ2
kHkrþ2;oB

6 cr
1

nr
kW krþ1;oB

n
þ kHkrþ2;oB

o
: ðA:6Þ

Finally, from (2.29), (3.20) and (A.6), we get

kw� wnk1;oD 6 ckW � Wnk1;oB 6 cr
1

nr
kwkrþ1;oD

n
þ khkrþ2;oD

o
: �

Next we prove the convergence of approximate solutions in the exterior domain.

Theorem A.2. Let wðxÞ;wnðxÞ, for x 2 R3 n �D, be, respectively, defined by (2.7) and (3.40), for a given data

h 2 Crþ2ðoDÞ with r > 0. Then, for x 2 R3 n �D, and for any ‘ 2 N, there exist constants cr; c‘;r > 0, inde-

pendent of n, such that

jwðxÞ � wnðxÞj6 cr
1

nr
j ~Mxj1 kW krþ1;oB

�n
þ kHkrþ2;oB

	
þ j~Nxj1k ~Hkrþ1;oB

o
þ c‘;r

1

n‘þr
k ~Mxkrþ‘;oBkW k1;oB

n
þ k~Nxkrþ‘;oBk ~Hk1;oB

o
; ðA:7Þ

where jdj1 :¼
R
oB jdðŷÞj dsðŷÞ, W is the unique solution of (2.30), ~M ; ~N ; ~H are given by (3.36), and

~H ¼ 0ðorHÞ for the Dirichlet (or the Neumann/Robin) problem.

Proof. We use representations (3.35), (3.37) and (3.38) to prove the result. Let x 2 R3 n �D, be fixed. We
have, jwðxÞ � wnðxÞj6 I1 þ I2, where

I1 ¼
Z
oB

~MxðŷÞW ðŷÞ
��� � Ln

~Mx

� 	
ðŷÞWnðŷÞ

��� dsðŷÞ
6

Z
oB

~MxðŷÞðW
��� � WnÞðŷÞ

��� dsðŷÞ þ Z
oB

~Mx

���� �Ln
~Mx

	
ðŷÞWnðŷÞ

��� dsðŷÞ
6 ~Mxj1kW � Wnk1;oB þ jWnj1k ~Mx �Ln

~Mxk1;oB ðA:8Þ
and

I2 ¼
Z
oB

~NxðŷÞ ~HðŷÞ
��� � ðLn

~NxÞðŷÞðLn
~HÞðŷÞ

��� dsðŷÞ
6

Z
oB

~NxðŷÞ ~H
���� �Ln

~H
	
ðŷÞ

��� dsðŷÞ þ Z
oB

~Nx

���� �Ln
~Nx

	
ðŷÞLn

~HðŷÞ
��� dsðŷÞ:

6 j~Nxj1k ~H �Ln
~Hk1;oB þ jLn

~H j1k~Nx �Ln
~Nxk1;oB: ðA:9Þ
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Using the detailed analysis in [13,19], it can be shown that jWnj1 and jLn
~H j1 are uniformly bounded. Since

~Mx; ~Nx are infinitely continuously differentiable on oB, applying the estimates (A.1) and (A.6) in (A.8) and

(A.9), we get the result (A.7). �

Finally, we obtain the convergence of the approximate far field pattern wn;1, given by (3.42).Since our

approach for computing wn;1 is analogous to computations on the exterior region (see Section 3.5), it is
easy to see that for a fixed direction x̂ 2 oB, following Theorem A.2, jw1ðx̂Þ � wn;1ðx̂Þj is bounded by the

estimate in (A.7), with ~Mx; ~Nx replaced, respectively, by Mf
x̂ ;N

f
x̂ , defined in (3.41).

Since mf ðx̂; yÞ; nf ðx̂; yÞ are linear combinations of e�ikx̂�y and oe�ikx̂�y=onðyÞ, for y 2 oD, we have for any

‘ 2 N, and for any x̂ 2 oB,

jMx̂j1 6 c k; kMx̂k‘;oB 6 c‘ k‘þ1; jNf
x̂ j1 6 c k; kNf

x̂ k‘;oB 6 c‘ k‘þ1: ðA:10Þ

Consequently, using arguments in Theorem A.2, we get the following result.

Theorem A.3. Let w1 be as in (2.8), for given a data function h 2 Crþ2ðoDÞ with r > 0. Let wn;1 be given by

(3.42). Then, for any ‘ 2 N, there exist constants cr; c‘;r > 0, independent of n, such that

kw1 � wn;1k1;oB 6 cr
1

nr
fkW krþ1;oB þ kHkrþ2;oB þ k ~Hkrþ1;oBg þ c‘;r

1

n

� �‘þr

fkW k1;oB þ k ~Hk1;oBg;

ðA:11Þ

where W is the unique solution of (2.30), and ~H ¼ 0 (or H) for the Dirichlet (or the Neumann/Robin) problem.
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